Abstract

To know the structural and functional features of the cytosolic-facing first loop (LC1) including its surrounding region of the mitochondrial ADP/ATP carrier (AAC), we prepared 27 mutants, in which each amino acid residue between residues 106 and 132 of the yeast type 2 AAC (yAAC2) was replaced by a cysteine residue. For mutant preparation, we used a Cys-less AAC mutant, in which all four intrinsic cysteine residues were substituted with alanine residues, as a template [Hatanaka, T., Kihira, Y., Shinohara, Y., Majima, E., and Terada, H. (2001) Biochem. Biophys. Res. Commun. 286, 936-942]. From the labeling intensities of the membrane-impermeable SH-reagent eosin-5-maleimide (EMA), sequence Lys(108)-Phe(127) was suggested to constitute the LC1. The N-terminal half of this region (Lys(108)-Phe(115)) was suggested to change its location from the cytosol to a region close to the membrane on conversion from the c-state to the m-state in association with disruption or unwinding of its alpha-helical structure, whereas the C-terminal half region (Gly(116)-Phe(127)) was considered to extrude essentially into the cytosol, while keeping its alpha-helical structure. Hence, the conformation of m-state LC1 is greatly different from that of c-state LC1. Possibly the LC1 changes its location between the membranous region and the cytosol during ADP/ATP transport. Lys(108) in the LC1 of the yAAC2 was found to be associated with binding of the transport substrates, and its -NH(3)(+) moiety, to be of importance for the transport function. On the basis of these results, possible roles of the conformational changes of the LC1 in the transport activity are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call