Abstract

Biochar (BC) has been widely used to remove heavy metals from wastewater. However, due to the hydrophobicity of BC and the lack of its surface functional groups, the effect of metal ions adsorption onto BC is limited. In order to improve the adsorption efficiency, L-cysteine was used to modify biochar derived from pomelo peel (PP) to regulate surface structure. The characteristics of BC and cysteine/biochar composite (cys/BC) were analyzed by various characterization methods. Results showed that the hydrophilicity of biochar was enhanced, and the number of surface functional groups was increased, resulting to strong adsorption ability of Ag(I) (618.9 mg/g), Pb(II) (274.5 mg/g), and As(V) (34.7 mg/g) for cys/BC, which increased approximately by 15%, 35%, and 29% compared with that of BC, respectively. The adsorption process of Pb(II) onto cys/BC was fitted better by the Freundlich isotherm model and for Ag(I) and As(V) by the Langmuir isotherm model. Moreover, the adsorption kinetics followed pseudo-second-order equation and the adsorption process was controlled by the intraparticle diffusion for Ag(I), Pb(II), and As(V) adsorption onto cys/BC. In addition, the adsorption capacities of cys/BC for Ag(I), Pb(II), and As(V) decreased slightly after five adsorption/desorption cycles. Finally, the multiple adsorption mechanisms including functional groups, pore adsorption, surface complexation, and cations-π were analyzed. The paper demonstrated that the cys/BC composite could be reused as effective adsorbents for removing contaminants in the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.