Abstract
Upon myocardial infarction (MI), activated cardiac fibroblasts (CFs) begin to remodel the myocardium, leading to cardiac fibrosis and even heart failure. No therapeutic approaches are currently available to prevent the development of MI-induced pathological fibrosis. Most pharmacological trials fail from poor local drug activity and side effects caused by systemic toxicity, largely due to the lack of a heart-targeted drug delivery system that is selective for activated CFs. Here, we developed a reduced glutathione (GSH)-responsive nanoparticle platform capable of targeted delivering of drugs to activated CFs within the infarct area of a post-MI heart. Compared with systemic drug administration, CF-targeted delivery of PF543, a sphingosine kinase 1 inhibitor identified in a high-throughput antifibrotic drug screening, had higher therapeutic efficacy and lower systemic toxicity in a MI mouse model. Our results provide a CF-targeted strategy to deliver therapeutic agents for pharmacological intervention of cardiac fibrosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.