Abstract
Protein aggregation and misfolding have been allied with numerous human disorders and thus inhibition of such occurrence has been center for intense research efforts against these diseases. Here, we investigated anti-fibrillation activity of cysteine and its effect on kinetics of stem bromelain amyloid fibril formation. We established the anti-fibrillation and anti aggregation activities of cysteine by using multiple approaches like turbidity measurements, dye binding assays (ThT and ANS) and structural changes were monitored by circular dichroism (CD) followed by electron microscopy. Our experimental study inferred that cysteine inhibits temperature induced fibrillation of protein in a concentration dependent way. In addition, MDA-MB-231 cell viability of pre-formed amyloid was increased in presence of cysteine as compared to the fibrils alone. Furthermore, dynamic light scattering studies of native, aggregated as well as incubated (amyloids in presence of cysteine) samples indicates that cysteine restores native like structures of stem bromelain. Isothermal titration calorimetric results revealed that hydrogen bonding between cysteine and stem bromelain plays a significant role during inhibition of stem bromelain aggregation. However, thiophilic interaction between thiol group of cysteine and aromatic amino acid residue of stem bromelain may also have noteworthy role in inhibition of amyloid formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.