Abstract

The neuron-restrictive silencer factor/RE1-silencing transcription factor (NRSF/REST) is regarded as not only a key transcriptional repressor but also an activator in neuron gene expression by specifically interacting with neuron-restrictive silencer element (NRSE/RE1) dsDNA and small NRSE/RE1 dsRNA, respectively. But its exact mechanism remains unclear. One major problem is that it is hard to obtain its functional multiple zinc finger (ZnF) domains in a large quantity for further structural studies. To address this issue, in this study, we for the first time attained soluble NRSF/REST functional domains named as ZnF5–8, ZnF4–8, ZnF3–8 and ZnF2–8 containing four, five, six and seven ZnF motifs in tandem, respectively, by using Circular Dichroism (CD) spectrum and two-dimensional (2D) nucleic magnetic resonance (NMR) 1H–1H NOESY spectrum to monitor the folding of each single ZnF peptide. The data indicated that the residue cysteine 397 (Cys397) plays important roles in the global folding of NRSF/REST multiple ZnFs domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.