Abstract
Much of the excess iron reported in the substantia nigra of subjects with Parkinson's disease (PD) implicates nonneuronal (glial) cellular compartments. Yet, the significance of these glial iron deposits vis-a-vis toxicity to indigent nigrostriatal dopaminergic neurons remains unclear. Cysteamine (CSH) induces the appearance of iron-rich (peroxidase-positive) cytoplasmic inclusions in cultured rat astroglia, which are identical to glial inclusions that progressively accumulate in substantia nigra and other subcortical brain regions with advancing age. We previously demonstrated that the iron-mediated peroxidase activity in these cells oxidizes dopamine and other catechols to potentially neurotoxic semiquinone radicals. In the present study, we cocultured catecholamine-secreting PC12 cells (as low-density dispersed cells or high-density colonies) atop monolayers of either CSH-pretreated (iron-enriched) or control rat astroglial substrata. In some experiments, the PC12 cells were differentiated with nerve growth factor (NGF). The nature of the glial substratum did not appreciably affect the growth characteristics of the PC12 cells. However, undifferentiated PC12 cells grown atop CSH-pretreated astrocytes (a senescent glial phenotype) were far more susceptible to dopamine(1 microM)-H2O2(1 microM)-related killing than PC12 cells cultured on control astroglia. Differentiated PC12 cells behaved similarly although the fraction killed was about half that seen with the undifferentiated PC12 cells. In the latter experiments, PC12 cell death was abrogated by coadministration of the antioxidants, ascorbate (200 microM), melatonin (100 microM), or resveratrol (50 microM) or the iron chelator, deferoxamine (400 microM), attesting to the role of oxidative stress and catalytic iron in the mechanism of PC12 cell death in this system. The aging-associated accumulation of redox-active iron in subcortical astrocytes may facilitate the bioactivation of dopamine to neuronotoxic free radical intermediates and thereby predispose the senescent nervous system to PD and other neurodegenerative disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.