Abstract

Hydrogen sulfide (H2S), as an endogenous signaling molecule in mammals, shows a variety of biological effects. Cystathionine gamma-lyase (CSE)/H2S pathway has been implicated in scavenging reactive oxygen species (ROS) in the mammalian cells. Therefore, we first investigated the regulatory effects of exogenously applied hydrogen peroxide (H2O2) on CSE expression in the mammalian cells. African green monkey kidney fibroblastlike cells (COS-7 cells) or human embryonic kidney 293 cells (HEK 293 cells) were transfected with CSE promoter-luciferase reporter constructs and treated with H2O2 of 1, 5, and 10 microM for 0.5 and 1.5 h at 37 degrees C. The transfected cells were assayed for firefly luciferase activities normalized by Renilla luciferase activity. Human lung adenocarcinoma cells (A549 cells) or human liver cancer cells (SMMC-7721 cells) were treated with H2O2 of 1, 5, and 10 microM for 0.5 and 1.5 h at 37 degrees C, and were then harvested and analyzed by Western blotting and quantitative RT-PCR. Our results showed that the treatment of a medium concentration (5 microM) of H2O2 at a longer time (1.5 h) upregulated CSE expression in the mammalian cells at the levels of the promoter, message RNA, and protein. Collectively, exogenously applied H2O2 can not only markedly affect CSE mRNA and protein expression, but also can affect the CSE promoter activity in the mammalian cells. Our observations indicate that that exogenous H2O2 can upregulate the expression of the CSE gene in the mammalian cells, which will provide the possibility of the scavenging effect of the CSE gene indirectly on ROS in the mammalian cells. However, the regulatory mechanism involved in the effects of exogenously applied H2O2 on CSE expression in the mammalian cells need be further studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.