Abstract

Protein cysteinyl thiols are susceptible to reduction-oxidation reactions that can influence protein function. Accurate quantification of cysteine oxidation is therefore crucial for decoding protein redox regulation. Here, we present CysQuant, a novel approach for simultaneous quantification of cysteine oxidation degrees and protein abundancies. CysQuant involves light/heavy iodoacetamide isotopologues for differential labeling of reduced and reversibly oxidized cysteines analyzed by data-dependent acquisition (DDA) or data-independent acquisition mass spectrometry (DIA-MS). Using plexDIA with in silico predicted spectral libraries, we quantified an average of 18% cysteine oxidation in Arabidopsis thaliana by DIA-MS, including a subset of highly oxidized cysteines forming disulfide bridges in AlphaFold2 predicted structures. Applying CysQuant to Arabidopsis seedlings exposed to excessive light, we successfully quantified the well-established increased reduction of Calvin-Benson cycle enzymes and discovered yet uncharacterized redox-sensitive disulfides in chloroplastic enzymes. Overall, CysQuant is a highly versatile tool for assessing the cysteine modification status that can be widely applied across various mass spectrometry platforms and organisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call