Abstract

In zinc proteins, the Zn 2+ cation frequently binds with a tetrahedral coordination to cysteine and histidine side chains. We examine the possibilities and limitations of a classical, pairwise force field for molecular dynamics of such systems. Hartree Fock and density functional calculations are used to obtain geometries, charge distributions, and association energies of side chain analogues bound to Zn 2+. Both ionized and neutral cysteines are considered. Two parameterizations are obtained, then tested and compared through molecular dynamics simulations of two small, homologous proteins in explicit solvent: Protein Kinase C and the Cysteine Rich Domain (CRD) of Raf, which have two Cys 3His–Zn 2+ groups each. The lack of explicit polarizability and charge transfer in the force field leads to poor accuracy for the association energies, and to parameters—including the zinc charge, that depend on the number of bound cysteines and their protonation state. Nevertheless, the structures sampled with the best parameterization are in good overall agreement with experiment, and have zinc coordination geometries compatible with related structures in the Cambridge Structural Database and the Protein Data Bank. Non-optimized parameters lead to poorer structures. This suggests that while a simple force field is not appropriate for processes involving exchange between water and amino acids in the zinc coordination sphere (e.g. protein unfolding), it can be useful for equilibrium simulations of stable Cys 3His zinc fingers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.