Abstract

Diabetes causes a number of metabolic and physiological abnormalities in the retina. Many of the molecular and physiological abnormalities that develop during diabetic retinopathy are due to inflammation. Monocyte chemoattractant protein-1 (MCP-1) is an important factor involved in diabetic retinopathy. In a previous study, we found that cysteine-rich 61 (Cyr61), an important angiogenic factor, also plays an important role in diabetic retinopathy. In addition to the direct effects of Cyr61, we observed that Cyr61 can induce the expression of MCP-1. However, the mechanism through which this occurs is not completely understood in chorioretinal vascular endothelial cells. We therefore investigated the effects of Cyr61 on MCP-1 expression in this cell type. Cyr61 stimulated the expression of MCP-1 at the mRNA, protein, and secreted protein levels in a dose-dependent and time-dependent manner. Both total MCP-1 levels and secreted MCP-1 levels were attenuated during the response to Cyr61 stimulation by pretreatment with integrin ανβ3-blocking antibodies, a FAK inhibitor (PF573228), a PI3K inhibitor (LY294002), and an Akt inhibitor (A6730). Electrophoretic mobility shift assays revealed that the above inhibitors suppressed the activation of NF-κB. Additionally, deletion of the NF-κB-binding element in the MCP-1 gene promoter led to a decrease in expression in luciferase reporter assays. These results show that the induction of MCP-1 by Cyr61 is mediated through the activation of the integrin ανβ3, FAK, PI3K/Akt, and IKK/NF-κB pathways in chorioretinal vascular endothelial cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call