Abstract

The contribution of drug metabolites to cyproheptadine (CPH)-induced alterations in endocrine pancreatic beta-cells was investigated by examining the inhibitory activity of CPH and its biotransformation products, desmethylcyproheptadine (DMCPH), CPH-epoxide and DMCPH-epoxide, on hormone biosynthesis and secretion in pancreatic islets isolated from 50-day-old rats. Measurement of (pro)insulin (proinsulin and insulin) synthesis using incorporation of 3H-leucine showed that DMCPH-epoxide, DMCPH and CPH-epoxide were 22, 10 and 4 times, respectively, more potent than CPH in inhibiting hormone synthesis. The biosynthesis of (pro)insulin was also inhibited by CPH and DMCPH-epoxide in islets isolated from 21-day-old rat fetuses. The inhibitory action of CPH and its metabolites was apparently specific for (pro)insulin, and the synthesis of other islet proteins was not affected. Other experiments showed the metabolites of CPH were active in inhibiting glucose-stimulated insulin secretion but were less potent than the parent drug in producing this effect. CPH and its structurally related metabolites, therefore, have differential inhibitory activities on insulin synthesis and release. The observation that CPH metabolites have higher potency than CPH to inhibit (pro)insulin synthesis, when considered with published reports on the disposition of the drug in rats, indicate that CPH metabolites, particularly DMCPH-epoxide, are primarily responsible for the insulin depletion observed when the parent compound is given to fetal and adult animals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call