Abstract

Oxidative stress can induce many diseases. Antioxidant peptides from food sources have the advantages of good safety, high activity, and good absorbability. In this study, a pentapeptide (SFRWQ; SER-PHE-ARG-TRP-GLN) was identified in a protein hydrolysate of Cyperus (Cyperus esculentus L.). Enzyme-linked immunosorbent assay (ELISA), real-time quantitative (qPCR), immunofluorescence and other techniques were used to evaluate the anti-inflammatory and antioxidant effects of SFRWQ. SFRWQ was found to have 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging ability, help increase superoxide dismutase (SOD) and catalase (CAT) levels in RAW264.7 cells, reduce reactive oxygen species (ROS) levels, and decrease tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) gene expression and secretion. The binding score of SFRWQ to recombinant Kelch-like ECH-associated protein 1 (Keap1) was greater than that of TX6. These findings suggest that SFRWQ activates the Keap1-Nrf2 cellular antioxidant signaling pathway. According to metabolomics studies, SFRWQ increased glutathione (GSH), glutathione disulfide (GSSG), and γ-glutamylcysteine levels and decreased the levels of Prostaglandin D2 (PGD2), Prostaglandin E2 (PGE2), and Prostaglandin H2 (PGH2), which are involved in arachidonic acid metabolism, to protect cells from LPS-induced damage. By elucidating the mechanism of action of SFRWQ, we provide a reference for the development of dietary antioxidant peptides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call