Abstract

Cypermethrin induces the slow and progressive degeneration of the nigrostriatal dopaminergic neurons in rats. Postnatal preexposure with low doses of cypermethrin is known to enhance the susceptibility of animals upon adulthood reexposure. The study was undertaken to delineate the role of mitochondria in cypermethrin-induced neurodegeneration. Indexes of dopaminergic neurodegeneration, microglial activation, and mitochondrial dysfunction and its proteome profile were assessed in controls and cypermethrin-treated rats. Cypermethrin increased nigral dopaminergic neurodegeneration and microglial activation while reduced mitochondrial membrane potential and complex I activity. Cypermethrin attenuated striatal dopamine content and differentially regulated the expressions of the nine striatal and ten nigral proteins. Western blot analyses showed that cypermethrin also increased c-Jun N-terminal kinase (JNK), caspase-3, tumor suppressor protein (p53), tumor necrosis factor-α (TNF-α), p38 mitogen-activated protein kinase (p38 MAPK), and heme oxygenase-1 (HO-1) expressions and reduced B cell lymphoma-2 protein (Bcl-2) expression. Syndopa and minocycline rescued from cypermethrin induced augmentation in microglial activation and reductions in mitochondrial membrane potential and complex I activity, striatal dopamine content, and degeneration of nigral dopaminergic neurons. Syndopa and minocycline, respectively, modulated the expressions of four and six striatal and four and seven nigral proteins. Furthermore, they reinstated the expressions of JNK, caspase-3, Bcl-2, p53, p38 MAPK, TNF-α, and HO-1. The study demonstrates that cypermethrin induces mitochondrial dysfunction and alters mitochondrial proteome leading to oxidative stress and apoptosis, which regulate the nigrostriatal dopaminergic neurodegeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.