Abstract

C-Glycosylflavones are ubiquitous in the plant kingdom, and many of them have beneficial effects on human health. They are a special group of flavonoid glycosides in which the sugars are C-linked to the flavone skeleton. It has been long presumed that C-glycosylflavones have a different biosynthetic origin from O-glycosylflavonoids. In rice (Oryza sativa), a C-glucosyltransferase (OsCGT) that accepts 2-hydroxyflavanone substrates and a dehydratase activity that selectively converts C-glucosyl-2-hydroxyflavanones to 6C-glucosylflavones were recently described. In this study, we provide in vitro and in planta evidence that the rice P450 CYP93G2 protein encoded by Os06g01250 is a functional flavanone 2-hydroxylase. CYP93G2 is related to the CYP93B subfamily, which consists of dicot flavone synthase II enzymes. In the presence of NADPH, recombinant CYP93G2 converts naringenin and eriodictyol to the corresponding 2-hydroxyflavanones. In addition, CYP93G2 generates 2-hydroxyflavanones, which are modified by O-glycosylation in transgenic Arabidopsis (Arabidopsis thaliana). Coexpression of CYP93G2 and OsCGT in Arabidopsis resulted in the production of C-glucosyl-2-hydroxyflavanones in the dibenzoylmethane tautomeric form. The same structure was reported previously for the in vitro OsCGT reaction products. Thus, CYP93G2 generates 2-hydroxyflavanone substrates from flavanones for C-glucosylation by OsCGT in planta. Furthermore, knocking down Os06g01250 in rice (O. sativa subsp. japonica 'Zhonghua 11') preferentially depleted the accumulation of C-glycosylapigenin, C-glycosylluteolin, and C-glycosylchrysoeriol but did not affect the levels of tricin, which is frequently present as O-glycosides in cereals. Taken together, our work conclusively assigned CYP93G2 as the first enzyme that channels flavanones to C-glycosylflavone biosynthesis in rice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.