Abstract

The aim of the study is to develop a population pharmacokinetic (PopPK) model and to investigate the influence of CYP3A5/CYP3A4 and ABCB1 single nucleotide polymorphisms (SNPs) on the Tacrolimus PK parameters after LCP-Tac formulation in stable adult renal transplant patients. The model was developed, using NONMEM v7.5, from full PK profiles from a clinical study (n = 30) and trough concentrations (C0) from patient follow-up (n = 68). The PK profile of the LCP-Tac formulation was best described by a two-compartment model with linear elimination, parameterized in elimination (CL/F) and distributional (CLD/F) clearances and central compartment (Vc/F) and peripheral compartment (Vp/F) distribution volumes. A time-lagged first-order absorption process was characterized using transit compartment models. According to the structural part of the base model, the LCP-Tac showed an absorption profile characterized by two transit compartments and a mean transit time of 3.02 h. Inter-individual variability was associated with CL/F, Vc/F, and Vp/F. Adding inter-occasion variability (IOV) on CL/F caused a statistically significant reduction in the model minimum objective function MOFV (p < 0.001). Genetic polymorphism of CYP3A5 and a cluster of CYP3A4/A5 SNPs statistically significantly influenced Tac CL/F. In conclusion, a PopPK model was successfully developed for LCP-Tac formulation in stable renal transplant patients. CYP3A4/A5 SNPs as a combined cluster including three different phenotypes (high, intermediate, and poor metabolizers) was the most powerful covariate to describe part of the inter-individual variability associated with apparent elimination clearance. Considering this covariate in the initial dose estimation and during the therapeutic drug monitoring (TDM) would probably optimize Tac exposure attainments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.