Abstract

Cytochrome P450 3A (CYP3A) activity is inhibited, and its expression is suppressed during many diseases, including nonalcoholic fatty liver disease (NAFLD). However, the mechanism is controversial. Here, we report that PXR may not take part in the downregulation of CYP3A during NAFLD. Hepatic CYP3A11 (major subtype of mouse CYP3A) mRNA and protein expression was significantly decreased in both mice fed a high-fat diet (HFD) for 8 weeks and palmitate (PA)-treated mouse primary hepatocytes. Similarly, in HepG2 cells, PA treatment significantly suppressed the CYP3A4 (major subtype of human CYP3A) mRNA level and promoter transcription activity. However, Western blotting analysis found an induction of PXR nuclear translocation during NAFLD in both in vivo and in vitro models. Moreover, immunofluorescence determination also found nuclear translocation effect of PXR by PA stimulation in HepG2 cells. In addition, the siRNA knockdown of PXR did not affect the suppressive effects of PA on the CYP3A4 promoter transcription activity and mRNA levels in HepG2 cells. Similarly, PXR knockdown also did not affect the suppressive effects of PA on CYP3A11 mRNA and protein expression levels in mouse primary hepatoctyes. Taken together, the results showed that the suppressive effect of CYP3A transcription was independent of PXR regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.