Abstract

AbstractMammalian cytochrome P450 drug‐metabolizing enzymes rarely cleave carbon–carbon (C−C) bonds and the mechanisms of such cleavages are largely unknown. We identified two unusual cleavages of non‐polar, unstrained C(sp2)−C(sp3) bonds in the FDA‐approved tyrosine kinase inhibitor pexidartinib that are mediated by CYP3A4/5, the major human phase I drug metabolizing enzymes. Using a synthetic ketone, we rule out the Baeyer–Villiger oxidation mechanism that is commonly invoked to address P450‐mediated C−C bond cleavages. Our studies in 18O2 and H218O enriched systems reveal two unusual distinct mechanisms of C−C bond cleavage: one bond is cleaved by CYP3A‐mediated ipso‐addition of oxygen to a C(sp2) site of N‐protected pyridin‐2‐amines, and the other occurs by a pseudo‐retro‐aldol reaction after hydroxylation of a C(sp3) site. This is the first report of CYP3A‐mediated C−C bond cleavage in drug metabolism via ipso‐addition of oxygen mediated mechanism. CYP3A‐mediated ipso‐addition is also implicated in the regioselective C−C cleavages of several pexidartinib analogs. The regiospecificity of CYP3A‐catalyzed oxygen ipso‐addition under environmentally friendly conditions may be attractive and inspire biomimetic or P450‐engineering methods to address the challenging task of C−C bond cleavages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.