Abstract

ObjectiveDespite the widespread use of doxorubicin (DOX) in chemotherapy, it can cause cardiotoxicity, which severely limits its potential clinical use. CYP2J2-derived epoxyeicosatrienoic acids (EETs) exert cardioprotective effects by maintaining cardiac homeostasis. The roles and latent mechanisms of EETs in DOX cardiotoxicity remain uncertain. We investigated these aspects using mouse tissue and cell culture models. MethodsC57BL/6J mice were injected with rAAV9-CYP2J2 or a control vector via the caudal vein. A five-week intraperitoneal course of DOX (5 mg/kg per week) was administered. After pretreatment with 14,15-EET, H9C2 cells were treated for 24-h with DOX, to use as a cell model to verify the role of EETs in cardiotoxicity in vitro. ResultsCYP2J2 overexpression mitigated DOX-induced cardiotoxicity, as shown by the diminished cardiac injury marker levels, improved heart function, reduced oxidative stress, and inhibition of myocardial apoptosis in vivo. These protective roles are associated with the enhancement of antioxidant and anti-apoptotic abilities and the activation of the AMPK pathway. 14,15-EET suppresses DOX-induced oxidative stress, mitochondrial dysfunction, and apoptosis in H9C2 cells. AMPK knockdown partially abolished the cardioprotective effects of 14,15-EET against oxidative damage and apoptosis in DOX-treated cells, suggesting that AMPK is responsible for EET-mediated protection against cardiotoxicity. ConclusionCYP2J2-derived EETs confer myocardial protection against DOX-induced toxicity by activating the AMPK pathway, which reduces oxidative stress, mitochondrial dysfunction, and apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call