Abstract
Background: Cytochrome P450 epoxygenase 2J2 (CYP2J2) metabolizes arachidonic acids to epoxyeicosatrienoic acids (EETs). EETs exert various biological effects, including anti-inflammatory, anti-apoptotic, pro-proliferation, pro-angiogenesis, anti-oxidation, and anti-fibrosis effects. However, little is known about the role of CYP2J2 and EETs in lung ischemia/reperfusion injury. In this study, we examined the effects of exogenous EETs or CYP2J2 overexpression on lung ischemia/reperfusion injury in vivo and in vitro. Methods and Results: CYP2J2 gene was stably transfected into rat lungs via pcDNA3.1-CYP2J2 plasmid delivery, resulting in increased EETs levels in the serum and lung. A rat model of lung ischemia/reperfusion injury was developed by clamping the left lung hilum for 1 hour, followed by reperfusion for 2 hours. We found that CYP2J2 overexpression markedly decreased the levels of oxidative stress and cell apoptosis in lung tissues induced by ischemia/reperfusion. Moreover, we observed that exogenous EETs, or CYP2J2 overexpression, enhanced cell viability, decreased intracellular reactive oxygen species (ROS) generation, inhibited mitochondrial dysfunction, and attenuated several apoptotic signaling events in a human pulmonary artery endothelial cells (HPAECs)-based anoxia/reoxygenation model. These apoptotic events included activation of NADPH oxidase, collapse of mitochondrial transmembrane potential, and activation of pro-apoptotic proteins and caspase-3. These effects were mediated, at least partially, by the PI3K/Akt signaling pathway. Conclusion: These results reveal that CYP2J2 overexpression and exogenous EETs can protect against oxidative stress and apoptosis following lung ischemia/reperfusion in vivo and in vitro, suggesting that increasing the level of EETs may be a novel promising strategy to prevent and treat lung ischemia/reperfusion injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.