Abstract

Bernard B. Brodie's laboratory was the first to examine the mechanisms of drug-induced toxicity at the molecular level. They found that acetaminophen hepatotoxicity was due to the metabolic activation of the drug to a highly reactive toxic metabolite that depleted cellular glutathione and covalently bound to protein. Subsequent studies revealed that activation of acetaminophen to an active metabolite is primarily carried out by CYP2E1, an ethanol-inducible cytochrome P450 that was first suggested by characterization of the microsomal ethanol oxidation system. CYP2E1 is developmentally regulated, under liver-specific control, and undergoes substrate-induced protein stabilization. It is also regulated by starvation and diabetes through insulin-dependent mRNA stabilization. In addition to acetaminophen, CYP2E1 metabolically activates a large number of low M(r) toxicants and carcinogens and thus is of great toxicological importance. The mechanism of regulation CYP2E1 and its role in acetaminophen toxicity will be discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.