Abstract

Aims/IntroductionThe objective of the present study was to investigate the effects of CYP2C9*3 polymorphisms on the therapeutic response to gliclazide in type 2 diabetes patients.Materials and MethodsA total of 746 incident type 2 diabetes patients were included in this study. After enrolment, patients went on 4‐week gliclazide monotherapy. Fasting plasma glucose was measured before and after treatment. Hypoglycemia episodes and lifestyle information were collected by weekly follow up. Genotyping of rs1057910 was carried out using the single base primer extension method. The t‐test, analysis of variance and chisquare‐test were used to evaluate the effects of rs1057910 alleles on the therapeutic response to gliclazide.ResultsAfter the therapy, fasting plasma glucose decreased significantly from 11.2 ± 2.7 mmol/L to 8.0 ± 2.2 mmol/L (P < 0.001). Patients with AC/CC genotypes of rs1057910 had a greater reduction of fasting plasma glucose (3.6 vs 3.0 mmol/L, P < 0.001; 31.4 vs 24.5%, P < 0.001) and a higher rate of treatment success (54.7 vs 37.5%, P < 0.001; 51.4 vs 32.3%, P < 0.001; 71.6 vs 48.3%, P < 0.001 for criterion 1, 2 and 3, respectively).ConclusionsThe present study showed that the polymorphism at rs1057910 significantly affected the therapeutic response of gliclazide in type 2 diabetes mellitus patients. The risk allele is associated with a greater decrease of fasting blood glucose and a higher rate of treatment success with gliclazide monotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.