Abstract

Background CYP26A1 has been reported in multiple cancers. However, the role of CYP26A1 in pancreatic cancer (PC) has not been explored. Method The public data used for this study was obtained from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Cancer Cell Line Encyclopedia (CCLE) cell lines. CCK8, colony formation, and EdU assay were used to assess the proliferation ability of cancer cells. Transwell and wound healing assays were used to evaluate the invasion and migration ability of cancer cells. qRT-PCR and western blot assays were used to analyze the RNA and protein level of genes. Survival package was used for prognosis analysis. Gene Set Enrichment Analysis (GSEA) was used to identify biological pathway differences between two groups. ssGSEA analysis was used to quantify the immune microenvironment in PC tissue. GDSC and TIDE analyses were used for sensitivity analysis of chemotherapy and immunotherapy. Results Our results showed that CYP26A1 was overexpressed in PC tissue and cell lines. Meanwhile, metastatic PC cell lines tend to have a higher CYP26A1 level compared with the primary PC cell lines based on CCLE data. Moreover, CYP26A1 was associated with worse clinical features. Also, we found that CYP26A1 had a satisfactory efficiency in predicting overall survival, disease-specific survival, and progression-free interval of PC patients, independent of other clinical features. In vitro experiments indicated that CYP26A1 could significantly facilitate the proliferation, invasion, and migration ability of PC cells. GSEA showed that the pathways of angiogenesis, E2F target, MYC target, mTORC signaling, G2M checkpoint, and epithelial-mesenchymal transition were activated in high CYP26A1 patients. Immune infiltration analysis showed that CYP26A1 was positively correlated with macrophages, Th1 cells, and Treg cells, but negatively correlated with Th17 cells. TIDE analysis showed that non_responder patients had a higher CYP26A1 level compared with predicted responder patients of immunotherapy. Drug sensitivity analysis and assay showed that CYP26A1 could increase the chemotherapy sensitivity of gemcitabine. Conclusions In summary, CYP26A1 promotes PC progression and is a novel biomarker of PC, with potential for clinical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call