Abstract

Phenanthrenes (Phs) substituted with alkyl groups are a class of compound present in the environment, and they appear to be toxic to developing fish. The present study aimed to investigate the effect of waterborne exposure to two monomethyl derivatives of phenanthrene, 1-methylphenanthrene (1M-Ph) and 4-methylphenanthrene (4M-Ph), on cytochrome P450 1A (CYP1A) gene expression in fish gills and liver. Juvenile common roaches (Rutilus rutilus) were exposed to water with dimethyl sulfoxide (DMSO) solutions of 1M-Ph, 4M-Ph, benzo[a]pyrene (BaP; positive control), each at a dose of 100 µg/L, or to water with DMSO alone (negative control group) for 2 d and 7 d. Significant CYP1A responses with regard to treatment and exposure duration were noted (2-way analysis of variance [ANOVA]) in gills (p = 0.013 and p = 0.003, respectively) and liver (p < 0.001). The 2 monomethyl Phs did not induce consistent gene expression changes, except for 4-MPh, which elevated the CYP1A messenger ribonucleic acid (mRNA) level in the liver at the end of the treatment (almost 4-fold; p < 0.05; 7 d). As was expected, exposure to BaP resulted in elevation of CYP1A mRNA expression in treated fish compared with the control group. Expressions after 2 d and 7 d were approximately 220- and 180-fold higher in liver and 8- and 6-fold higher in gills respectively. The CYP1A protein levels remained stable in both tissues, with one notable exception in roach liver treated for 2 d with BaP (∼ 6-fold increase; p < 0.05). The different effects of the 1- and 4-methylphenanthrenes on CYP1A gene expression in roach liver suggest a relationship between chemical or 3-D structure of the differentially substituted monomethyl Phs and their biological activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call