Abstract

BackgroundEstrogens, environmental chemicals with carcinogenic potential, as well as oxidative and carbonyl stresses play a very important role in breast cancer (BC) genesis and progression. Therefore, polymorphisms of genes encoding enzymes involved in estrogen biosynthesis pathway and in the metabolic activation of pro-carcinogens to genotoxic intermediates, such as cytochrome P450C17α (CYP17), endogenous free-radical scavenging systems, such as glutathione S-transferase (GSTP1) and paraoxonase 1 (PON1), and anti-glycation defenses, such as glyoxalase I (GLO1), could influence individual susceptibility to BC. In the present case-control study, we investigated the possible association of CYP17 A1A2, GSTP1 ILE105VAL, PON1 Q192R or L55M, and GLO1 A111E polymorphisms with the risk of BC.MethodsThe above-said five polymorphisms were characterized in 547 patients with BC and in 544 healthy controls by PCR/RFLP methods, using DNA from whole blood. To estimate the relative risks, Odds ratios and 95% confidence intervals were calculated using unconditional logistic regression after adjusting for the known risk factors for BC.ResultsCYP17 polymorphism had no major effect in BC proneness in the overall population. However, it modified the risk of BC for certain subgroups of patients. In particular, among premenopausal women with the A1A1 genotype, a protective effect of later age at menarche and parity was observed. As to GSTP1 and PON1 192 polymorphisms, the mutant Val and R alleles, respectively, were associated with a decreased risk of developing BC, while polymorphisms in PON1 55 and GLO1 were associated with an increased risk of this neoplasia. However, these findings, while nominally significant, did not withstand correction for multiple testing.ConclusionGenetic polymorphisms in biotransformation enzymes CYP17, GSTP1, PON1 and GLO1 could be associated with the risk for BC. Although significances did not withstand correction for multiple testing, the results of our exploratory analysis warrant further studies on the above mentioned genes and BC.

Highlights

  • Estrogens, environmental chemicals with carcinogenic potential, as well as oxidative and carbonyl stresses play a very important role in breast cancer (BC) genesis and progression

  • Plausible that polymorphisms of genes encoding enzymes involved in estrogen biosynthesis pathway or metabolic activation of pro-carcinogens to genotoxic intermediates, endogenous free-radical scavenging systems and anti-glycation defenses, may influence individual susceptibility to BC

  • First-degree family history of BC was associated with an increased risk of this malignancy (OR, 2.63; 95% Confidence intervals (CI), 1.60–4.40, P < 0.01)

Read more

Summary

Introduction

Environmental chemicals with carcinogenic potential, as well as oxidative and carbonyl stresses play a very important role in breast cancer (BC) genesis and progression. Polymorphisms of genes encoding enzymes involved in estrogen biosynthesis pathway and in the metabolic activation of pro-carcinogens to genotoxic intermediates, such as cytochrome P450C17α (CYP17), endogenous free-radical scavenging systems, such as glutathione S-transferase (GSTP1) and paraoxonase 1 (PON1), and anti-glycation defenses, such as glyoxalase I (GLO1), could influence individual susceptibility to BC. Dietary factors, lifestyle, environmental chemicals with carcinogenic potential, as well as oxidative and carbonyl stresses, play a very important role in BC pathogenesis and progression [2,3,4,5,6,7,8] It is, plausible that polymorphisms of genes encoding enzymes involved in estrogen biosynthesis pathway or metabolic activation of pro-carcinogens to genotoxic intermediates, endogenous free-radical scavenging systems and anti-glycation defenses, may influence individual susceptibility to BC. The clinical relevance of these polymorphic genes remains to be fully elucidated and needs further investigation

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call