Abstract

Cylindrospermopsin (CYN) and microcystins (MC) are cyanotoxins that can occur simultaneously in contaminated water and food. CYN/MC-LR mixtures previously investigated in vitro showed an induction of micronucleus (MN) formation only in the presence of the metabolic fraction S9. When this is the case, the European Food Safety Authority recommends a follow up to in vivo testing. Thus, rats were orally exposed to 7.5 + 75, 23.7 + 237, and 75 + 750 μg CYN/MC-LR/kg body weight (b.w.). The MN test in bone marrow was performed, and the standard and modified comet assays were carried out to measure DNA strand breaks or oxidative DNA damage in stomach, liver, and blood cells. The results revealed an increase in MN formation in bone marrow, at all the assayed doses. However, no DNA strand breaks nor oxidative DNA damage were induced, as shown in the comet assays. The histopathological study indicated alterations only in the highest dose group. Liver was the target organ showing fatty degeneration and necrotic hepatocytes in centrilobular areas, as well as a light mononuclear inflammatory periportal infiltrate. Additionally, the stomach had flaking epithelium and mild necrosis of epithelial cells. Therefore, the combined exposure to cyanotoxins may induce genotoxic and histopathological damage in vivo.

Highlights

  • Climate and nutrient changes are contributing to global eutrophication and global expansion of harmful algal blooms [1], including the proliferation of cyanobacterial blooms [2]

  • This assay was conducted following the recommendations of OECD guideline 474 [53], and it is especially relevant for assessing genotoxicity because, they may vary among species, factors of in vivo metabolism, pharmacokinetics, and DNA repair processes are active and contribute to the responses

  • Results are measured as the polychromatic erythrocytes (PCE) out of total erythrocytes (normochromatic erythrocytes (NCE) + (PCE)), and the PCE/NCE ratios, which were calculated by counting 500 erythrocytes per animal

Read more

Summary

Introduction

Climate and nutrient changes are contributing to global eutrophication and global expansion of harmful algal blooms [1], including the proliferation of cyanobacterial blooms [2]. The consumption of contaminated food and dietary supplements with cyanotoxins cannot be disregarded, some of them (such as cylindrospermopsin) have not been found in commercially-available blue-green algal supplements until recently [2,4,5]. The most studied cyanotoxins are microcystins (MCs) and cylindrospermopsin (CYN) as a consequence of their toxicity and wide distribution. The severity of these intoxications depends on several factors, such as their chemical structure, mechanisms of action, and concentrations of cyanotoxins involved [2]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call