Abstract
Here, we propose and experimentally demonstrate a cylindrical vector beam (CVB) sorter based on a spin-dependent spiral transformation. By exploiting the spin-orbital interaction of the geometric phase, a pair of conjugated spiral transformations are applied to modulate the two orthogonal circularly polarized components of the CVB, which are converted into the same linear phase gradient from opposite azimuthal phase gradients. Since the orthogonal spin components of CVBs with different polarization orders carry different phase gradients, under the convergence of a convex lens, the coaxially transmitted CVBs can be sorted with spatially separated positions, and the increased phase gradient provided by the spiral transformation yields the high resolution. We show that five CVB modes from -2 to +2 are successfully sorted with a separation efficiency of 3.65. As a proof-of-concept, we demonstrate a two-channel CVB multiplexing communication with a bit error rate approaching 10-6. In addition to providing an avenue for CVB demultiplexing, our results show potential applications in mode filtering and mode routing in all-optical interconnection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.