Abstract

In this paper, we have studied the propagation of cylindrical shock waves in a self-gravitating perfect gas under the influence of azimuthal magnetic field. The method of Lie group invariance is used to construct some special class of self-similar solutions in the presence of the azimuthal magnetic field. The different cases of solutions with a power law and exponential law shock paths are obtained with the choice of arbitrary constants appearing in the expressions for the infinitesimal generators. The similarity solution for cylindrical shock wave with power law shock path is discussed in detail. The effects of variation of Alfven-Mach number, gravitation parameter, initial density variation index and adiabatic exponent on the flow variables are analyzed graphically. It is obtained that the increase in the values of Alfven-Mach number, gravitation parameter and adiabatic exponent have decaying effect on the shock strength. Also, the shock strength increases with an increase in the values of initial density variation index. A comparison is also made between the solutions in gravitating and non-gravitating cases in the presence of magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call