Abstract
Lambert (1772) derived the equation of the Mercator projection as a limiting case of a conformal conic projection. In this paper, we give a derivation for equidistant, equal-area, conformal and perspective cylindrical projections as limiting cases of equidistant, equal-area, conformal and perspective conic projections. In this article the conic and cylindrical projections are not projections on a cone or a cylinder whose surfaces are cut and developed into a plane, but rather mappings of the sphere directly into the plane. Exceptions are projections that are defined as mappings on the surface of a cone or plane, as is the case with perspective projections. In the end, we prove that it is not always possible to obtain a corresponding cylindrical projection as a limiting case from a conic projection, as one might conclude at first glance. Therefore, the final conclusion is that it is not advisable to interpret cylindrical projections as limiting cases of conic projections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.