Abstract
The cylindrical nano-indentation on metal film/elastic substrate is computationally studied using two-dimensional discrete dislocation plasticity combined with the commercial software ANSYS®, with a focus on the storage volume for geometrically necessary dislocations (GNDs) inside the films and the nano-indentation size effect (NISE). Our calculations show that almost all GNDs are stored in a rectangular area determined by the film thickness and the actual contact width. The variations of indentation contact width with indentation depth for various film thicknesses and indenter radii are fitted by an exponential relation, and then the GND density underneath the indenter is estimated. Based on the Taylor dislocation model and Tabor formula, a simple model for the dependence of the nano-indentation hardness of the film/substrate system on the indentation depth, the indenter radius and the film thickness is established, showing a good agreement with the present numerical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.