Abstract

Cylindrical magnetic nanowires (NWs) feature unique properties, which make them attractive for fundamental research and novel applications. These 1-D structures introduce a pronounced shape anisotropy that together with material selection can strongly affect the magnetic properties and can be tuned by incorporating segments of different materials or diameters along the length. They attract a large interest in the scientific community, ranging from physicists to material scientists to bioengineers. Consequently, these NWs are developed for and used in very diverse applications in medicine, biology, data and energy storage, catalysis, or microwave electronics, among others. In this review, we investigate the most active emerging applications of cylindrical NWs grown in alumina templates by electrochemical deposition. This method has several key features, including low cost and a high level of control over the design. A fundamental property that distinguishes those applications is the operating frequency, which we chose to apply as an underlying structure for this review. With this, we attempt to provide a wide and organized view of applications based on cylindrical magnetic NWs with a focus on tailored physical and chemical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.