Abstract

Temperature profiles in hollow fiber (HF)–direct contact membrane distillation (DCMD) are modeled analytically using the standard perturbation theory and the method of separation of variables. The theoretical results explain experimental observations reported in the literature. For HF–MD, new basic quantities Fw and Sw are proposed instead of conventional mass and heat flux definitions, respectively. Temperature varies linearly in the longitudinal direction, and Fw and Sq are proportional to the membrane thickness to the power of −2/3. The stream speed of the hot feed primarily controls mass transfer, and the lumen flow rate significantly influences the heat transfer. An analytical expression of the theoretical maximum membrane length is derived, which decreases with transmembrane temperature difference and increases with feed and permeate streams. The best performance of HF–DCMD operation in terms of mass and heat transfer can be reached by using a short HF membrane with fast stream speeds. For membranes of similar pore size and thickness, MD membranes of high porosity will give better performance by providing sparser pore structures and consequently lower spatial fraction for heat transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.