Abstract

The problem of a cylindrical cavity-backed suspended stripline (SSL) antenna is viewed as a transition of the SSL to a circular cylindrical waveguide opening into an infinite ground plane. The fields in the waveguide are expanded in terms of TE and TM modes. The effect of the radiating aperture on the modal expansion of the fields is taken into account by introducing reflection coefficients for each mode. The current on the SSL probe is assumed to have sinusoidal distribution. These simplifications reduce the original problem to that of a known radially oriented current residing on a dielectric sheet inside a circular-cylindrical cavity whose top wall has known impedances corresponding to different modes. The Green's function for this modified structure is found and is used to obtain a general expression for the input impedance. This expression is specialized to the case where the SSL probe and the radiating aperture are coupled through the dominant TE/sub 11/ mode only. This input impedance is translated to the measurement plane of the antenna. The computed and measured results are found to be in good agreement.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call