Abstract

The nonlinear propagation of cylindrical and spherical positron-acoustic shock waves (PASWs) in an unmagnetized four-component plasma (containing nonthermal distributed hot positrons and electrons, cold mobile viscous positron fluid, and immobile positive ions) is investigated theoretically. The modified Burgers equation is derived by employing the reductive perturbation method. Analytically, the effects of cylindrical and spherical geometries, nonthermality of electrons and hot positrons, relative number density and temperature ratios, and cold mobile positron kinematic viscosity on the basic features (viz. polarity, amplitude, width, phase speed, etc.) of PASWs are briefly addressed. It is examined that the PASWs in nonplanar (cylindrical and spherical) geometry significantly differ from those in planar geometry. The relevance of our results may be useful in understanding the basic characteristics of PASWs in astrophysical and laboratory plasmas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.