Abstract

The spillover noise of a reflector antenna can be reduced by attaching a shroud extending forward from the edge of the reflector; the shroud prevents ground radiation from entering the feed. Symmetrical paraboloidal antennas of diameter 40 wavelengths, equipped with cylindrical and conical shrouds, are analyzed using the method of moments. A cylindrical shroud, parallel to the reflector axis, may reduce antenna noise, but it raises the sidelobe level in the front hemisphere substantially and can also reduce antenna gain. These drawbacks can be overcome by using a conical shroud, flared outward. Such a shroud reduces the spillover lobes in the back hemisphere, thus lowering the antenna noise temperature, but generates a conical sidelobe in the front hemisphere. The peak level of this sidelobe can be reduced by building the shroud using two cones of different flare angles or by curving its cross section. The decrease in noise temperature, as well as the location and level of the conical sidelobes in the front hemisphere, can be predicted to useful accuracy using geometrical optics. The addition of a shroud increases the level of cross polarization near the main beam. However, this effect is reduced if the sharp corner where the shroud joins the reflector rim is replaced by a smooth transition. The level of cross polarization is then at a level comparable to that produced by scattering from feed‐support struts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.