Abstract

We present an algorithm which computes a cylindrical algebraic decomposition of a semialgebraic set using projection sets computed for each cell separately. Such local projection sets can be significantly smaller than the global projection set used by the Cylindrical Algebraic Decomposition (CAD) algorithm. This leads to reduction in the number of cells the algorithm needs to construct. A restricted version of the algorithm was introduced in Strzeboński (2014). The full version presented here can be applied to quantified formulas and makes use of equational constraints. We give an empirical comparison of our algorithm and the classical CAD algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.