Abstract

We study the quantum transport properties of cylindrical shaped wires, with submicrometric diameters and large aspect ratio. The zero bias conductance as a function of temperature, magnetic field and disorder is calculated for different kinds of nano cylinders, from semiconductor quantum wires to carbon nanotubes. A comparison between our findings and the experimental results allows the understanding of the charge carriers' localization, in the external surface or in the core of the wires, by highlighting the basic mechanism of charge transport. We discuss how we can infer that in InAs quantum wires the carriers move in the core. We examine the Aharonov-Bohm oscillations and the quenching that should be observed in the measured magneto conductivity of InAs nano cylinders and carbon nanotubes emphasizing the role of the angle between field and tube.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call