Abstract
In this survey paper the short history of cylindric and finitary polyadic algebras (term-definitionally equivalent to quasi-polyadic algebras) is sketched, and the two concepts are compared. Roughly speaking, finitary polyadic algebras constitute a subclass of cylindric algebras that include a transposition operator being strong enough. We discuss the following question: should the definition of cylindric algebras include a transposition operator? Results confirm that the existence of a transposition operator ensures representability (by relativised set algebras). The different variants of cylindric algebras including a transposition operator play an important role in the theory of cylindric-like algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.