Abstract

The morphological transition of an asymmetric diblock copolymer [A3-b-B9] in A-selective solvents is investigated using a simulated annealing technique. The study was carried out at high copolymer concentrations. Phase-transitions among hexagonally packed cylinders (C), gyroid (G), and lamellae (L) are observed. The phase transition sequence, C-->G-->L, was obtained with decreasing copolymer concentration and/or increasing B-solvent interaction. The predicted phase-transition sequence is consistent with experiments of diblock copolymers with similar volume fractions in selective solvents of different selectivity. The morphological transitions were further analyzed in terms of the average contact numbers for A or B monomers with other molecules and the total surface area of the core or matrix in each structure. It is found that these quantities correlate with the structures, providing an understanding of the phase-transition mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call