Abstract

We use our previous formulation for cylinder gratings in conical incidence to discuss the photonic band gap properties of woodpile structures. We study scattering matrices and Bloch modes of the woodpile, and use these to investigate the dependence of the optical properties on the number of layers. We give data on reflectance, transmittance and absorptance of metallic woodpiles as a function of wavelength and number of layers, using both the measured optical constants of tungsten and using a perfect conductivity idealization to characterize the metal. For semi-infinite metallic woodpiles, we show that polarization of the incident field is important, highlighting the role played by surface effects as opposed to lattice effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call