Abstract
Four-dimensional cone-beam computed tomography (4D CBCT) has been developed to provide a sequence of phase-resolved reconstructions in image-guided radiation therapy. However, 4D CBCT images are degraded by severe streaking artifacts and noise because the phase-resolved image is an extremely sparse-view CT procedure wherein a few under-sampled projections are used for the reconstruction of each phase. Aiming at improving the overall quality of 4D CBCT images, we proposed two CNN models, named N-Net and CycN-Net, respectively, by fully excavating the inherent property of 4D CBCT. To be specific, the proposed N-Net incorporates the prior image reconstructed from entire projection data based on U-Net to boost the image quality for each phase-resolved image. Based on N-Net, a temporal correlation among the phase-resolved images is also considered by the proposed CycN-Net. Extensive experiments on both XCAT simulation data and real patient 4D CBCT datasets were carried out to verify the feasibility of the proposed CNNs. Both networks can effectively suppress streaking artifacts and noise while restoring the distinct features simultaneously, compared with the existing CNN models and two state-of-the-art iterative algorithms. Moreover, the proposed method is robust in handling complicated tasks of various patient datasets and imaging devices, which implies its excellent generalization ability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.