Abstract
New radionuclides, used for targeted radionuclide therapy, can be produced by cyclotrons dedicated to nuclear medicine and which have become common. Among beta particle emitting radionuclides, copper-67 has favorable physical and biochemical properties. Its halflife of 2.58 days is well matched to the pharmacokinetics of F(ab’)2 antibody fragments and the energy of emitted electrons corresponds to a short path length that fits the size of disseminated clusters of malignant cells. But production of this radionuclide requires a high energy/high intensity cyclotron which limits its availability. Scandium-47 has favorable physical properties but also requires high proton energy cyclotron which explains its poor availability. Among alpha-emitting radionuclides which seem to be optimal for killing of isolated tumor cells due to the short path length and high linear energy transfer (LET) of emitted alpha particles, astatine-211 has attracted much interest because of a longer half-life (7.2 h) than that of bismuth-213 or bismuth-212 which have also been tested in preclinical and clinical studies. Actinium-225 which can be produced by proton irradiation of radium-226 and bismuth-213 have been proposed years ago for targeted radionuclide therapy. Actinium-225 has been presented as an « atomic nanogenerator » due to a cascade of radioactive daughters emitting four alpha particles per actinium-225 atom. Bismuth-213 has been used one decade ago for labeling of a humanized anti-CD33 antibody in a phase I clinical study in patients with acute myelogenous antibody. Finally terbium-149 with a half-life of 4.1 h is another alternative alpha-emitting radionuclide and has been used in a few preclinical studies. Radionuclides which emit Auger electrons such as indium-111 may be highly toxic if delivered in or close to nucleus of tumor cells. Thus today there is a real need for production of innovative radionuclides by cyclotrons to improve efficacy of targeted radionuclide therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.