Abstract
We propose and examine a comprehensive mechanism of the [(η5-C5H5)Rh]-catalyzed [2+2+2] cycloadditions of acetylene to benzene and of acetylene and acetonitrile to 2-methylpyridine, based on an extensive and detailed exploration of the potential energy surfaces using density functional theory. Both processes involve the formation of a coordinatively unsaturated 16-electron metallacycle, occurring after the replacement of the ancillary ligands L of the catalyst precursor of general formula [(η5-C5H5)RhL2] (typically L = C2H4, CO, PH3 or L2 = 1,5-cyclooctadiene) by two acetylene molecules. The facile coordination of a third acetylene molecule, and its subsequent addition to the π electron system of the rhodacycle, leads to the formation of an intermediate, which is characterized by a six-membered arene ring coordinated to the metal in η4 fashion. The release of benzene occurs by stepwise addition of two acetylene molecules, which regenerates the catalyst. In the presence of acetonitrile, a nitrile molecule ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.