Abstract

Cyclosporine is a potent immunosuppressant know to selectively suppress specific cytochrome P450 (P450) isoforms following chronic therapy in the rat. Cyclosporine undergoes significant hepatic metabolism in the rat, primarily due to P450 3A isoforms. Hence, alterations in hepatic metabolism of cyclosporine may lead to changes in drug pharmacokinetics or pharmacodynamics. The purpose of this study was to examine the temporal effect of chronic cyclosporine dosing on P450 protein expression and metabolic activity in a rat model of chronic cyclosporine nephropathy. Adult male rats were administered cyclosporine 15 mg/kg/day or vehicle 1 ml/kg/day by subcutaneous injection for up to 28 days. To examine whether or not metabolic activity recovered following drug removal, additional rats were administered cyclosporine for 28 days followed by vehicle for up to an additional 15 days. Hepatic P450 protein expression and microsomal metabolic activity were measured by Western blot analysis and in vitro steroid hydroxylation, respectively. Cyclosporine trough levels progressively increased over the 28 days period and were still measurable for up to 15 days after discontinuation. Immunoblot analysis indicated that chronic cyclosporine treatment suppressed P450 3A2 expression and in vitro steroid hydroxylation in a time-dependent manner. Fifteen days following discontinuation of cyclosporine dosing, hepatic metabolic activity and microsomal P450 3A2 levels returned to near pre-dosing levels. We conclude that the time-dependent P450 suppression by cyclosporine may at least partially explain the variability in cyclosporine pharmacokinetics. These studies support the hypothesis that hepatic isoforms other than P450 3A2 may be responsible for cyclosporine metabolism during chronic treatment in the rat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.