Abstract

Cyclosporin A (CsA) is an immunosuppressant used in transplantation patients and inflammatory diseases. CsA-induced local vasoconstriction can lead to serious side effects including nephrotoxicity and hypertension. However, the underlying mechanisms are not fully understood.Mesenteric artery rings of rats were cultured with CsA and specific inhibitors for mitogen-activating protein kinases (MAPK) and nuclear factor-κB (NF-κB) signaling pathways. A sensitive myograph recorded thromboxane (TP) receptor-mediated vasoconstriction. Protein levels of key signaling molecules were assessed by Western blotting. The results show that CsA up-regulated the TP receptor expression with the enhanced vasoconstriction in a dose- and time-dependent manner. Furthermore, the blockage of MAPKs or NF-κB activation markedly attenuated CsA-enhanced vasoconstriction and the TP receptor protein expression.Rats subcutaneously injected with CsA for three weeks showed increased blood pressure in vivo and increased contractile responses to a TP agonist ex vivo. CsA also enhanced TP receptor, as well as p-ERK1/2, p-p38, p- IκBα, p–NF–κB P65 protein levels and decreased IκBα protein expression, demonstrating that CsA induced TP receptor enhanced-vasoconstriction via activation of MAPK and NF-κB pathways.In conclusion, CsA up-regulated the expression of TP receptors via activation of MAPK and NF-κB pathways. The results may provide novel options for prevention of CsA-associated hypertension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.