Abstract

In Lewis rats, treatment with high doses of cyclosporin A (CsA) suppresses clinical signs of experimental autoimmune encephalomyelitis (EAE), although disease occurs when treatment is ceased. Treatment with low doses of CsA causes EAE to take a chronic relapsing course. We have previously shown that CsA treatment causes a decline in the number of T cells and increased inflammatory cell apoptosis in the spinal cord. The present study was undertaken to assess whether CsA therapy also modulates cytokine mRNA expression by inflammatory cells in the spinal cord of rats with EAE, looking for changes that might contribute to the observed effects of CsA on the course of EAE. EAE was induced in Lewis rats by inoculation with myelin basic protein and adjuvants. At the peak of neurological signs, on day 14 after inoculation, rats were given a single intraperitoneal injection of saline, or CsA at a dose of 8, 16, 32 or 64 mg/kg. The next day, rats were sacrificed, the spinal cords removed, inflammatory cells were extracted from the cords, and mRNA isolated from these cells. Expression of cytokine mRNA was assessed by semi-quantitative reverse transcription polymerase chain reaction (PCR) and by quantitative real-time PCR. With both techniques, we found that CsA suppressed the expression of interferon-γ mRNA and interleukin-2 (IL-2) mRNA. With real-time PCR, we found that CsA caused significantly increased expression of transforming growth factor-β mRNA. With the different techniques, we observed no consistent pattern of alteration of expression of interleukin-10 or interleukin-4 mRNA. It is possible that these changes in cytokine mRNA expression contribute to the modulation of the clinical course of EAE that is produced by CsA treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call