Abstract

Although the clinical efficacy of cyclosporin A (CSA) in retinoblastoma (RB) has been attributed to multidrug resistance reversal activity, the authors hypothesized that CSA is also directly toxic to RB cells through inhibition of calcineurin (CN)/nuclear factor of activated T-cells (NFAT) signaling. Antiproliferative effects of CSA, PSC-833 (a CSA analogue that does not inhibit CN), and FK506 (a CN inhibitor structurally unrelated to CSA) were evaluated in Y79 and Weri-RB1 cells by WST-1 assay. Apoptosis induction by CSA and PSC-833 was measured by detection of caspase 3/7 activity and by flow cytometry, using annexin-V and 7-AAD stains. Expression of CN was assayed in RB cells by immunocytochemistry. Expression of NFAT, a CN-dependent transcription factor family, and FK506 binding protein 12/12.6 (FKBP12/12.6), effectors of CN inhibition by FK506, was assayed in RB cells by Western blot analysis. NFAT activity was assayed in CSA-treated and -untreated Y79 cells transfected with an NFAT-sensitive reporter gene. CSA induced dose-dependent antiproliferative and proapoptotic effects at clinically achievable levels in Y79 and Weri-RB1 cells. PSC-833 induced antiproliferative effects only at nonphysiologic concentrations with minimal associated apoptosis. FK506 induced minimal antiproliferative effects in RB cell lines, probably due to trace or absent FKBP12/12.6 expression. RB cell lines expressed CN-alpha, CN-beta, NFATc1, and NFATc3. CSA treatment also potently inhibited NFAT-mediated reporter gene transcription. These results demonstrate functional integrity of the CN/NFAT signaling cascade in RB cells and suggest that CSA is cytotoxic to RB cells through inhibition of this pathway and consequent apoptosis induction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call