Abstract
Porous bioactive resorbable silica-calcium phosphate nanocomposite (SCPC) was prepared by a sintering technique. XRD analyses showed that the main crystalline phases of the SCPC are Na(3)CaPSiO(7) (clinophosinaite), beta-NaCaPO(4) (rhenanite), Na(2)CaSiO(4), and beta-quartz (SiO(2)). The clinophosinaite is a novel cyclosilicate bioactive mineral that enhanced the mechanical and bioactivity properties of the SCPC. TEM analysis showed that the grain sizes of the multiphase SCPC are in the nanometer scale. Moreover, the SCPC was engineered with nano- and microscale porosity. The SCPC had significantly higher compressive strength than porous hydroxyapatite (HA). FTIR analyses revealed the formation of biological hydroxyapatite layer on the SCPC surface after 4 days of immersion in SBF. When SCPC was loaded with rhBMP-2, it provided a superior release profile of biologically active rhBMP-2 compared to porous HA. Bone-marrow cells incubated with medium treated with the rhBMP-2 released from the SCPC-rhBMP-2 hybrid expressed significantly higher alkaline phosphatase activity than that expressed by cells incubated with media treated with rhBMP-2 released from HA-rhBMP-2. In addition, cells attached to the SCPC-rhBMP-2 hybrid produced mineralized extracellular matrix (ECM) and bone-like tissue that covered the material surface and filled pores in the entire thickness of the template after 3 weeks in culture. In contrary, cells attached to the HA-rhBMP-2 produced limited amount of unmineralized ECM after the same time period. Results of the study strongly suggest that the porous bioactive silica-calcium phosphate nanocomposite can serve as a delivery system for cells and biological molecules. The SCPC-rhBMP-2-marrow cell hybrid may serve as an alternative to autologous bone grafting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.