Abstract

[reaction: see text] The reactions of (trans-2-phenylcyclopropyl)ethyne, 1a, (trans,trans-2-methoxy-3-phenylcyclopropyl)ethyne, 1b, and (trans,trans-2-methoxy-1-methyl-3-phenylcyclopropyl)ethyne, 1c, with either aqueous sulfuric acid or tris(trimethylsilyl)silane (or tributyltin hydride) and AIBN have been investigated. Protonation and addition of the silyl (or stannyl) radical occurred at the terminal position of the alkyne giving an alpha-cyclopropyl-substituted vinyl cation or radical, respectively. Under both reaction conditions, 1a yielded products derived from ring opening toward the phenyl substituent. Alkynes 1b and 1c, however, gave different products depending on whether radical or cationic conditions were used. When radical conditions were employed, products derived from regioselective ring opening toward the phenyl substituent were obtained. In contrast, when cationic conditions were employed, products derived from selective ring opening toward the methoxy substituent were isolated. The corresponding alpha-cyclopropyl-substituted vinyllithium derivatives were also synthesized and were found to be stable toward rearrangement. An estimate of the rate constants for ring opening of the alpha-cyclopropylvinyl cations was also made: values of 10(10)-10(12) s(-1) were found for the vinyl cations derived from protonation of the terminal carbon of alkynes 1a-c. Based on these results, cyclopropyl alkynes 1a-c can be classified as hypersensitive mechanistic probes for the detection of vinyl radical or cationic intermediates generated adjacent to the cyclopropyl ring and, in the case of 1b and 1c, the distinction between a radical or cationic intermediate is possible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call