Abstract

Cyclopolymerization of a divinyl monomer, where two different vinyl groups, that is, acrylate and vinyl ether, are connected via an ester bond, was performed under diluted condition with nitroxide-meditated radical polymerization (NMP). Both vinyl groups were consumed at almost same rate under suitable condition, although the inherent cross-propagation ability between the two vinyl groups are pretty low in radical copolymerization. Furthermore, the polymerization was controlled to some extent to give polymers of unimodal molecular weight distributions. The results obviously differed from copolymerization and homopolymerization with vinyl monomers that constitutes the divinyl monomer, 2-methoxyethyl acrylate and 2-acetoxyethyl vinyl ether. Structural analyses indicated formation of the cyclopolymer but the cyclo-efficiency was imperfect indicating that some units of olefinic dangling were incorporated. Eventually, the ester bonds of the cyclo units were cleaved to convert into the copolymer consisting of acrylic acid and 2-hydroxy ethyl vinyl ether and the composition ratio (DPacryl/DPVE) was 55:45. The copolymer showed higher glass transition temperature than that estimated from the composition ratio and Tg values of the homopolymers, which is likely due to the formation of quasi-cyclopolymer between carboxylic acid and hydroxy groups aligned in alternating fashion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.