Abstract

Human respiratory syncytial virus (RSV) is a common cause of lower respiratory tract infections in infants and young children worldwide, yet no vaccine or effective antiviral treatment is available. To search for new anti-RSV agents, we developed a cell-based assay that measures inhibition of RSV-induced cytopathic effect (CPE) and identified cyclopiazonic acid (CPA), an intracellular calcium ATPase inhibitor as a RSV inhibitor (EC50 values 4.13 μM) by screening of natural product library. CPA inhibited the replication of RSV strains belonging to both A and B subgroups and human parainfluenza virus type 3, but not Enterovirus 71. Mechanism of action study by time-of-addition assay and minigenome assay revealed that CPA acts at the step of virus genome replication and/or transcription. Moreover, two other calcium ATPase inhibitors (Thapsigargin and BHQ) and calcium ionophores (A23187 and ionomycin), but not calcium channel blockers (nifedipine, nimodipine, and tetrandrine), also had similar effect. These results indicate that an increase in intracellular calcium concentration is detrimental to RSV replication. Thus, our findings provide a new strategy for anti-RSV therapy via increasing intracellular calcium concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.